If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-24x-60=0
a = 6; b = -24; c = -60;
Δ = b2-4ac
Δ = -242-4·6·(-60)
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{14}}{2*6}=\frac{24-12\sqrt{14}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{14}}{2*6}=\frac{24+12\sqrt{14}}{12} $
| 5(x-2)-(3x+4=3(6x-8)+10 | | -4x+2(2x+7)=8 | | (180-(6x-7))-3x=-29 | | 0.25+0.05x=0.12x+0.04 | | 0.2x+3=0.8 | | 3(4-2x)=-6x+12 | | 9p-7=-9+15p | | 4(p+8)-4=15p+6 | | 7x+2(5-x)=25 | | 8x+2x=15 | | 4-7p/10=p+14 | | 10x+5+2x-29=180 | | 5x+2=1x-1 | | 1/2(6+p)=p+4 | | -12=7-v | | 8-10p=10+5(p-1) | | 4+7y=8-7y | | 10/u=3/17 | | 82/5=x | | 42x=11 | | 37-4r=5r | | 61x=4 | | 12x+-20=-40 | | 7/x+1=4x-1/2x-3 | | 12x+-20=-12 | | y=15(3)+180 | | 14x6=3 | | 13.09+0.08x=13.59-0.15x | | 4-7y=8+7y | | 9n-9=4n+6 | | 2(1-4x)=2-8x | | 2m(3m+2)+(3m+2)=0 |